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Kramers potential study of the Rouse-like dynamics of short alkane chains
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In this work we present a Kramers potential study of the orientational dynamics and shear viscosity of short
chain alkanes. In this approach the determination of the orientational relaxation time is reduced to the calcu-
lation of static moments of single chain conformations. We study a chemically realistic alkane model that
asymptotically produces Gaussian chain conformations by means of a Monte Carlo simulation. Our results are
applicable to single chain descriptions of polymer melt dynamics and to the intrinsic viscosity of molecules in
a 0 solvent. When we map the unknown time unit of our relaxation time result for one particular chain length
and temperature to the value obtained for the same parameters from a molecular dynamics simulation of a melt
of these chains, we are able to reproduce the experimental data on the chain length dependence of the melt
viscosity of alkane chains at this temperaty&1063-651X99)02207-3

PACS numbeps): 83.10.Nn, 02.70.Lq, 66.26d

[. INTRODUCTION temperatures. It is therefore an intriguing question to what
extent a single chain effective medium theory like the Kram-
Following a suggestion made by Kramdfd, it is pos-  ers potential approach can reproduce and predict the shear
sible, at least for single chain polymer models, to obtain theesponse of these alkane chains in their Gaussian coiled state.
low shear rate limit of the orientational relaxation timén a The basic theory of the Kramers potential approach is
Rouse chain from biased sampling Monte Carlo computadescribed in Refs.2,4]. The biasing Kramers potentiély

tions of equilibrium radius of gyration daf@—4]. It turns ~ &cts on every monomer of the chains, with monomer posi-
. . tions measured from the center of mass of the chain. Thus for
out to lowest order in the shear ragethat the shear flow can

be replaced by its irrotational part, which is derivable from aa point .y) the Kramers potential is

velocity potential, and the calculation of the shear response U 1 Fx
can be reduced to the determination of the equlibrium radius K _Z &y y:gxy, (1)
of gyration of a chain under this potential streamj@g This keT 2 kgT

then vyields either the limiting intrinsic viscosity of such a h is th frict ffici Th |
model chain for which long range hydrodynamic forces argVherel Is the monomer friction coetficient. The only way
he medium in which the chain moves enters into the model

neglected or the Rouse model prediction of the melt viscosit I - .
. . . s this friction coefficient. Therefore, we can interpret our
of such chains. We apply this calculation procedure to a

chemically realistic alkane modé.6]. In the first version results either as describing a chain if®asolvent, where the
y T friction is generated through the interaction with the solvent

we only use the internal degrees of freedom of the mOOIeImolecules, or a melt chain, the friction being produced by

and in the second version additionally the nonbonded intefg,e jnteraction with the other chains in the melt. The latter

action either only between pentad methylenes or also bey,jication is usually not considered, but is based on the
tween 1-6 methylenes is included to prevent the overlap ofame physical devision into single chain response and back-
these groups. Both versions, however, ae¢ self-avoiding  ground friction that is used in the Rouse treatment of poly-
but random walks in their large scale structure, and are thergner melt viscosityf 10]: For this case one knows experimen-
fore models for polymer chains in@ solvent or in the melt.  tally that the friction coefficient depends on temperature and
A complete specification of our model is given in Sec. Il of chain length, so we can hawg=¢(T,N) in Eq. (1). We

this paper. We will look at the propertieS of these modeldenote a canonical average Ofadynamica' quaEtit}C'ud_

chains as a function of chain length, especially in the regioning this Kramers potential byE), and let the usual equilib-
where the chains show considerable deviations from the limgjym average wherg=0 be denoted byE),. If X2, is the

. . . gyr
iting Gaussian behavior. X component of the radius of gyration squared of our random

The technique has been applied previously to coarses gk chain, then the relaxation timé is given by
grained models of self-avoiding chains without internal de-

grees of freedom which where lined2], circular [3] or <X2 )
branched[4]. On the other hand, polyethylene or alkanes 2= lim| =279 _1 /92_ 2
have been extensively studied by computer simulations for g—0 <X§yr>0

many years, and in the last years the quality of the modeling

has improved to a point where one can quantitativly predicBy Taylor expanding the square bracket in E2).in powers
static and dynamic properties of alkane m¢Bs9]. Due to  of g one finds withN the number of repeat units in the chain
the large amount of computer time involved in such calcula-and the coordinates given in the center of mass reference
tions, they are only able to cover short chains and/or highrame
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TABLE I. Chemically realistic united atom force field used in the Monte Carlo generation of equlibrium
chain conformations.

bond length lcc=1.53 A=const
bond angle U,(6)=k’/2(cosf—cosby)?
k?=120 kcal/mol, §,=110°

dihedral angle 3
1> k?(1-cosne)
n=1

kf=1.5 kcal/mol, k= —0.764 kcal/mol k= 3.5 kcal/mol

) =)

O r ij = 20'
0=4.5 A, ecpy,cn,=0.09344 keal/mol eciy,cr, = 0.22644 keal/mol,

€CH,CH, ™ \ €CH,CH,€CH,CH;4

Lennard-Jones

€ap —C rij§20'

Uy(rij)=

1 1 NN N 1 N-1 N—2
= ——— 25 XLV Sy o _ _ _
=5 XN 21 le gl (XPXXkYjYido PU{ri}) Zexp{ B{ izl Uil + ;1 Uy(6)
N N-3 1 N
-2 > <XijYjYK>oly 3 +Zl U¢(¢i)+§._7 ULJ(rij)”, (4)
F1k=1 = =1

whereB=1/kgT, and we have formally included a potential-

hich sh hat the d ical entiy b lel energy term for the bond length which in the actual calcula-
which shows that the dynamical entity can be solely ex- o, will be taken as a constant. The first three terms are

pressed in terms of equilibrium averaged static data for Ouéxpressed in the internal coordinates of a chéwond

random walk chains. lengths, bond angles, and dihedral anglebereas the last

_The f'r:St thing we s;?” Clhefk '3 four m_";?er'éal calcula- honhonded term depends on the space coordinates of the
tions is the agreement it calculated from either Eqe2) or particles and thereby for each monomer paifX on all

(3), required by self-consistency. Besides varying the chaif,io o) degrees of freedom between them. If the nonbonded

lengthN we will change the temperature of our Monte Carlo.r'%erm is absent, the probability factorizes as

calculations, which affects the internal degrees of freedom i
the chains. We will attempt to approximate a change in the N-1 N-2 N-3

. . . d - 1
screening of the excluded volume interactions either by p({ri})zz [] e BYO]] e AU J] e AYUs(4D),
I =1 =1

changing the® solvent of a hypothetical infinitely dilute =
solution or changing the melt density, by changing the range ®)

of interactions between methylene uriis number of meth- To determine the partition function of the chain as the inte-

ylene units along the chainThis gives rise to the two ver- ' . ) :
. . ; ral over the configuration space of the internal coordinates,
sions of the model discussed earlier. Data on these changgs

“ o : We can proceed by a simple importance sampling Monte
of N, T and “solvent quality” and a comparison of our re- Carl h buildi he chain by choosi h indi
sults with available experimental and computer simulation -arlo scheme, building up the chain by choosing each indi-

X i . X . vidual degree of freedom according to its own probability
data on the viscosity of alkane chains will be presented in

. . ; . distribution:
Sec. lll. Finally we will present some conclusions in Sec. IV.

e AU
P(l)=— : ©®)
Il. MODEL AND SIMULATION TECHNIQUE f d|ie*BU|(|i)
In this work we apply the Kramers potential method to a °

chemically realistic model of polyethylengb,6]. In this o BUYO)
model the hydrogen atoms are not treated explicitly but are P(6)= ——,
combined with the backbone carbons into one united atom. dea-e‘ﬁuﬁ(ai)
We will use the force field given in Table I. With this chemi- o
cally realistic force field we now want to generate chain con-
formations which are representative for chains in the melt or e~ BUH(®)
in a® solvent. To do this we follow the procedure described P(¢i)=—5 .
in Refs.[11,12. The probability for a chain conformation is depe PYa(4)

given through its Boltzmann weight.
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This reduces all thermodynamic averages to the calculations 5

of arithmetic sample averages over the set of chains we gen-

erate. We will study this simplified model without any non- — T=300K
bonded interaction as a test and benchmark case for the 4 -- T=350K
Kramers potential approach to chemically realistic polymer |\ 77 T=400K
models. For this case we will generate’1libidependent Iiggﬁ

chains of lengthN=200. Discarding chain end effects we .
can simultanously sample the properties of all chains with o 3
lengthN<<200 by this procedure.

If we want to model alkane chains in a melt or inGa
solvent we will have to include the Lennard-Jones interac- 21
tions. However, we cannot simply include them between all
monomers in the chairl2] because this would lead to either
large scale self-avoiding walk statisticgood solvent, high ‘ , ‘ .
temperaturesor to a collapsed globular statbad solvent, 0.0 0.1 0.2 0.3 0.4 0.5
low temperatures neither of which would be representative 1/(N-1)
of the melt or® solvent we wish to describe. To achieve a
large scale random walk structure one has to neglect thf?1e
Lgnnard-J_ones !nteractlons between monomers beyond a C&%ated in the legend and the version of the model where no Lennard-
tain chemical distance of these monomers along the chaingas interactions are included.
irrespective of their distance in space. The most pronounced

effect here is the so called pentane effect, generated by thgyiic and dynamic properties for the cases with and without

inclusion_of the Lennard-Jones interaction betw_een_ MONOKonhonded interactions at the temperatufes300 K, 350
mers which are four bonds apart along the chain, i.e. 1-5¢ 400 K. 450 K and 509 K.

2-6,... [12]. Including this interaction removes
(gauche) (gauche) (g*g~) configurations of adjacent di-
hedral angles from the chain conformation, which would
lead to a strong overlap of monomers 1-5, etc. This interde- |n the case without inclusion of Lennard-Jones interac-
pendence of successive dihedral angles has to be includedtidbns we generated data with high statistical accuracy for
successful rotational isomeric stdflS) modeling of poly-  chains up to lengttN=200. As an example of the behavior
ethylene[13], and was shown in Ref14] to reproduce the of the large scale static properties of the chains, in Fig. 1 we
large scale conformation of 16H,0, melt chains at high display the characteristic ratio of the chains, defineCqs
temperatures. To determine the effect of the chemical cutoft (R?)/(N—1)I2 where (R?) is the mean squared end-to-
distance for the Lennard-Jones interaction, we will additionend distance of the chains, ahd1.53 A is the G—C bond
ally study the case where 1-5 and 1-6 interactions are intength, as a function of inverse chain lengthumber of
cluded. C—C bonds. The curves for the different temperatures
With the inclusion of the Lennard-Jones interaction Wemerge on the scale of the trimer since the bond ang|e force
can no longer generate a chain according to its correGonstant is of the order of 60000 K, so that the temperature
Boltzmann weight. Let us denote a thermodynamic averag@ariation we performed has no influence on the size of the
without the Lennard-Jones interaction(@s), and one with  trimer. ForN— the characteristic ratio approaches a tem-

FIG. 1. Chain length dependence of the characteristic ratio of
chaingfor a definition, see textfor several temperatures indi-

Ill. RESULTS

the Lennard-Jones interaction @) ;. Then we have perature dependent limiting valu@, , and the leading cor-
rection is linear in the chain lengffi3]. For chain lengths
<Ae_IBULJ>O N>20 we can perform linear regressions to extract@he

(A= (7)  values. This procedure still works for the case with inclusion

—BULy\ X X
(e )o of the Lennard-Jones interactions, where we can use a range

of chain lengthdN=20 to N~70 where we have sufficient
To determine averages in the case with the Lennard-Jonesatistical accuracy for the regression analysis. The result of
interaction, we therefore have to weigh all configurationsthis analysis is displayed in Fig. 2, where we show the ex-
that we generated by the above described treatment of theapolated values of .. as a function of temperature for the
internal degrees of freedom by the Boltzmann factor of thehree versions of the model we studied. It is obvious from
nonbonded interaction. The terfexp{—BU, ;})o(N,T) de-  this figure that there is a large effect due to the inclusion of
scribes the attrition, i.e., by which factor the relative weightthe pentad Lennard-Jones interaction which removes the
of chains of lengttN at a temperatur@ is reduced for each (gauche) —(gauche) conformations of consecutive dihe-
chain we try to generate. This factor decreases exponentiallyral angles and increases the chain stiffness by a factor of 2.
with chain length, and it is about 16 for chains of length  This was also observed in an earlier study of the equilibrium
N=280 and the inclusion of the 1-5 Lennard-Jones interactiorsize of alkane chains using realistic potent{dg]. The in-
at the temperatures we want to study. This means that faclusion of the 1-6 interaction in addition to the 1-5 interac-
that 10 chains we generate we only obtain the statistication introduces an additional net attraction between the
weight equivalent to 1Dchains for those of lengthl=80,  monomers into the model, and leads to a slight decrease of
thus limiting the chain lengths we can study with the inclu-the chain stiffness. A further extension of the Lennard-Jones
sion of the nonbonded interaction. In Sec. lll we will discussinteraction along the chain would increase this effdd].
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FIG. 2. Extrapolated infinite chain length characteristic ratio as  FIG. 4. Dependence of the Kramers-averaged mean squared ra-
a function temperature. Connected circles are for the case witho@ius of gyration of the molecules on the scaled Kramers potential
Lennard-Jones interactions, connected squares for the inclusion &trength[see Eq.(1)]. The curves are for different chain lengths

the pentane 1-5 interaction, and connected diamonds for the furthdtdicated in the legend and the case without any Lennard-Jones
inclusion of the 1-6 interaction. interactions forT=300 K. The regime where E@2) can be used
to determine the relaxation time is the linear portion of these curves.
We will address the question which of the model versions "¢ °P" triangles indicate the zero shear rgte @) value of the
. mean squared radius of gyration.
best represents alkane chains in the melt state at a later point
in the manuscript.
First let us turn to the determination of the dynamic prop-
erties of the chains using the Kramers potential. From(8q.

we can determine the rotationénd-to-end vectorrelax-

nificant corrections to the aysmptotic Rouse prediction. To
address the question of consistency between the two methods
[Egs. (2) and (3)] to determine the relaxation time of the
ation time of the molecules solely through the evaluation of0lecules, we have to look into the dependence of the aver-
age squared radius of gyration on the strength of the shear

sixth and fourth order static moments of the chain conformafI ) h h th e th
tion. The result of this analysis in the case without any ow as parametrized t rough the paramefer the Kramers
otential [cf. Eq. (1)]. In Fig. 4 we show the Kramers-

Lennard-Jones interaction is shown in Fig. 3. The relaxatio® , , L
times are normalized to the expected asymptotic Rouse scaivéraged squared radius of gyration as a functiog“ofc-

ing law 7o<N2. For the different temperatures we see a slow0rding to Eq.(22) there should be a linear variation in this
approach to this behavior as a function of chain length. FoP!ot for smallg= values, which is indeed what is observed.

the analysis of the cases with Lennard-Jones interactions it ishe dashed lines are fits of the foriRf(g) =Rg(0)+cg”
important to note that for chain lengthé< 100 we see sig- The range of shear strengths for which this linear variation is
observable decreases with increasing chain length. Further-

more, the value of the Kramers-averaged squared radius of
0.004 ; ' ' gyration in thisg? regime is only slightly different from the
equilibrium value forg=0 displayed in the figure by the
open triangles. From this figure it is evident that the use of
Eq. (2) for the determination of the relaxation time of the
chains requires a calculation of the Kramers-averaged gyra-
tion radii with high statistical accuracy to be able to deter-
mine the slope of the curves in Fig. 4 through a regression
0002 7 — T=300K ] analysis. As an example of this analysis we show the result
-- T=350K for T=509 K in Fig. 5a). The full curve is the relaxation
“““““ T=400K time determined from the moments, and the dashed and
0.001 | --- T=450K ] somewhat noisy curve is the result of the analysis of (B.
--- T=509K For N>30 we obtain a perfect agreement between the two
methods, but foN<<30 the moment method is superior since
, , , the fit method is hampered by the very small effect the shear
50 100 150 200 flow has on the extension of these small chains, making the
N Kramers-averaged radius of gyration almost indistinguish-
FIG. 3. End-to-end vector orientational correlation time as a@ble from the equilibrium one. We can put that differently by
function of chain length, as obtained from the moment equation foSaying that, in order to determine the relaxation time from
the case of no Lennard-Jones interactions. The curves are for tiBe effect of the shear flow on the average radius of gyration,
different temperatures denoted in the legend. The relaxation time &€ would have to go to much higher shear rates for chains of
scaled with the asymptotic power law dependence of the RouskengthN<30 in order to resolve the difference between the
theory. situations with and without flow. The moment method, on

0.003 |

N

0.000
0
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FIG. 5. Comparison of the results for the relaxtion time obtained FIG. 6. Influence of the inclusion of the Lennard-Jones interac-
from the moment equatiofi3) and the fit equation(2): (& N0 oy on the relaxtion time as obtained from the moment equation:
Lennard-Jones interactiorih) 1-5 Lennard-Jones interaction in- (a) 509 K and(b) 450 K.
cluded. The temperatures are given in the figures.

which shows the behavior foF=509 K, there is a slight

the other hand, looks at higher moments of the gyration radecrease of the relaxation time for the chain lengths we were
dius distribution which are more sensitive to the strength ofable to study when we go from the 1-5 Lennard-Jones case to
the flow, and therefore gives more reliable data in the shorthe 1-6 Lennard-Jones case, which also showed a small de-
chain region. For comparison we have included the Rouserease in chain stiffness. For=450 K, however, we cannot
N? behavior for largeN as the dotted line in the figure. In the make out any difference between the two cases for the chain
cases with Lennard-Jones interactions the fit method stillengths we were able to study, and the curves agree within
works, albeit with a large systematic uncertainty due to thaheir statistical errors which can be deduced from the noisi-
very much reduced statistical quality of the available dataness of the curves.
Figure 8b) shows the result fom=300 K, and we now At this point we can conclude that we are able to deter-
include the error bars for the fitted relaxation time data. Fomine the longest relaxation time of alkane chains up to
small N the fitted values are again larger than the momentengths aboutN=70 using the Kramers potential approach.
values, but for 35:N<<65 we can see a reasonable agree-Since the model we are using is a chemically realistic model
ment between the two methods. On the whole, however, it ifor the alkane chains, the static properties we obtain are di-
preferable to use the moment equati@nfor the determina- rectly given in experimental units. The model has also been
tion of the longest relaxation time of the molecules. used in extensive molecular dynamics simulations of the

Same as for the static properties, the inclusion ofstatic and dynamic properties of alkane chain mg$,9|
Lennard-Jones interactions has a significant influence on thier chains of length up tdl=100. It was shown to reproduce
relaxation time. The relaxation time for the stiffer chains,the experimental information on the size of the chains in the
where the Lennard-Jones interaction is included are muchelt [6]. Therefore we can use the available molecular dy-
larger than those in the case without Lennard-Jones interactamics(MD) data to determine which cutoff in the Lennard-
tions and the difference between the two increases with indones interaction corresponds to the excluded volume screen-
creasing chain lengtiiFigs. §a) and @b)]. In Fig. &a), ing the chains feel in a melt situation. This correspondence
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7 dence of the radius of gyration for a fixed chain length, we
a can furthermore deduce the temperature coefficient of the
| ® MD Mondelio et al. V4 chains:
125 + MD Paul et al. /
--- nolLJ 7
100} — LJ1-5 / ] o dIn((Rg >) )
—- LJ1-6 y T dT
N ///
< P / Following Ref. [15] we perform a linear fit to(RZ)*?
v 4 as a function of temperature for 300<Kr<509 K, and
50 - 1 average the resulting small temperature dependence of
k. Our results arex=—1.2x10"% K~ for N=60 and
25 | ] k=—1.1x10"% K~ for N=44, which are in good agree-
ment with the experimental results of Refl5] of
o , , , , k=—(1.06-0.07)x10 3 K~! for a polyethylene of
0 10 20 ?\10 40 50 60 weight average molecular weighl,,=32000 g/mol and

k=—(1.25-0.06)x 103 K~ for a polyethylene of weight
FIG. 7. Equilibrium value of the mean squared radius of gyra-average molecular weight,,=53 000 g/mol.
tion as a function of chain length far=400 K. The filled symbols Having established that the 1-5 Lennard-Jones case de-
are from two MD simulations of melts of the respective chain scribes alkane chains in the melt, we can now try to analyze
length using the same chemically realistic model we employ herethe predictions for the relaxation time we obtain from our
The curves are the result of a Monte Carlo sampling of single chaiimodel. For this purpose we have to note that our results are
conformations using either no Lennard-Jones interactitashed  given in dimensionless unitgy}, and we have to determine
curve, only the 1-5 interactior(full curve), or the 1-5 and 1-6 our underlying time scale by matching our result for the
interaction (long-dashed curye The inclusion of only the 1-5 end-to-end vector orientational correlation time again to re-
Lennard-Jones interaction seems to compare best to the excludegts of MD simulations using the same model. Paul, Smith,
volume screening situation in the alkane melts. and Yoon[5] reported a relaxation time for the end-to-end
vector for C,, at 450 K of ryp=494 ps. We obtainr
cannot be deduceal priori from the microscopic model, and =3.303 for the case without Lennard-Jones interaction, and
it depends on the polymer species under study and through=5.204 for the 1-5 case. Since the 1-6 case gave results
the excluded volume screening length in the melt it stronglythat were indistinguishable from the 1-5 case at the tempera-
depends on melt density. In Fig. 7 we show our single chainures of interest, we will not discuss it further. Equating the
Monte Carlo results for the mean squared average radius @&laxation times results in a time unit of% 150 ps without
gyration at 400 K for the three versions of our model andLennard-Jones interaction and% 95 ps with the Lennard-
compare these to the results of MD simulations by MondellaJones interaction. Mondellet al. also showed that one can
et al. and Paul, Smith, and Yoon. Mondelét al. looked at  reproduce dynamic shear viscosity data as obtained from a
the chain length dependence of the mean squared radius abnequlibrium molecular dynamics simulation using equilib-
gyration of alkane chains in the melt for three differentrium data for the orientational correlation time of the mol-
chemically realistic alkane models, including the one one okcules. In the Rouse model the shear viscosity can be calcu-
us proposed earligb]. For N=44 their result agrees within lated from this relaxation time by
the error bars with the one Paul, Smith, and Yd6ih re-
ported. For the range of chain lengths displayed in Fig. 7 we
conclude that both the 1-5 and 1-6 Lennard-Jones cases are n=
able to reproduce the MD dataote that these are all direct

simulation results and there is no fitting envolye@ihe 1-6  wherep is the mass densityy is Avogadro’s numbelk; is
case, however, for larger chain lengths seems to increase leggltzmann’s constant, anlll is the molar mass of the mol-
strongly than the 1-5 case and the MD data. We thereforecule. This relation also gave the correct viscosity prediction
conclude that the 1-5 Lennard-Jones version of our model ifor small chain lengthd!< 60, where the Rouse model is not
able to reproduce the static conformations of short alkang consistent description of the chain dynamics. For small
melt chains at 400 K. This is further supported by an analysiglkane chains in the melt there is an experimental set of data
of the characteristic ratio for this case as a function of chainn the literature for densities and shear viscosities for several
length using the same asymptotic relation as for Fig. 2,  chain lengths aff =450 K [16]. Using the densities they
reported, we can calculate our prediction for the shear vis-
cosities of these alkane melts using the time scaling per-
formed above. In Fig. 8 we show the result of this approach
for different chain lengths. The full line is the prediction
from the 1-5 Lennard-Jones case, and the dashed line the
predicion for no Lennard-Jones interactions. Both have to
agree for G, by construction but their chain length depen-
which agrees with the result of Reff5,9], Cy-44(450) dence is very different. Also included are the experimental
=7.0 compared to 7.1 of Ref5] and Cy-10¢(509)=7.5 data of Pearsost al., which exactly agree with the predic-
compared to 7.2 of Ref6]. From the temperature depen- tion for the 1-5 case. This again shows the applicability of

szNAkBTT

Y (19

Cu(T)=C(T)~ . @

We obtainCy(400)=8.5—-53.3N, Cy(450)=8.1-48.2N,
and Cy(509)=8.0—48.5N. So we haveCy-44(400)=7.3,
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FIG. 8. Comparison of the alkane melt viscosity as determined F|G. 9. Predicted kinematic viscositppen circles as a func-
from the Kramers potential relaxation times with experimental datajgon of chain length for alkane melts at 400 K. The kinematic vis-
of Pearsoret al. at 450 K. After mapping of the unknown Kramers ¢osity is predicted to show &6 behavior at this temperature. The

time scale to results of MD simulations for 3nelt, the Kramers fjjied triangles are measured kinematic viscosities of short paraffins
prediction for the viscosity in the 1-5 Lennard-Jones case exactlyt T—372 K (from Ref.[18]).

agrees with the experimental data. The viscosity scaledl'ds

which compares well with theN® behavior that Pearsoat al. . . o )
reported for unentangled alkanes in the melt. proach atT=400 K to predict the kinematic viscosity as a

function of chain length. Equating the above cited values for

ecule to the shear viscosity. More astonishingly this figure2PProach we obtain a time unit-177 ps. The results for
shows that through the Kramers approach we are able e kinematic viscosity as a function of chain lengthTat
predict correctly the chain length dependence of experimen=400 K are displayed in Fig. 9. From this calculation the
tal shear viscosity data by means of the calculation of purelkinematic viscosity of alkane melt chains at=400 K
static conformational averages of the chaitie relaxation ~should scale a®'® for 6<<N<50. We also include kine-
times were determined through the moment equatisrom ~ Mmatic viscosity data reported in Ref17] for short chain
our calculation we would determine a behavigeN*7, paraffins. We can see that the agreement is almost quantita-
which agrees within the uncertainties with tNé® behavior ~ tive; however, the experimental data seem to show a slightly
Pearsonret al. reported. Both results differ from the Rouse Smaller effective exponent as a function of chain length in
prediction,eN due to the chain end effects on the monomerthe experimentally reported range.

friction coefficient not accounted for in the Rouse modieé
chain length dependence of the density is wgakN®Y).

At this point we should note that the approach is, how-
ever, not capable of also reproducing the temperature depen- We showed in Sec. Ill that the Kramers potential ap-
dence of the relaxation timé&siscositie$ with just the single  proach that reduces the determination of the shear response
time scaling. AtT=400 K, Paul, Smith, and Yoofb] re-  of molecules to the calculation of static moments of the
ported an orientational correlation time of,p=938 ps single chain conformations can be successfully and consis-
(which is almost twice as large as for=450 K), whereas tently applied to a chemically realistic alkane chain model.
the Kramers result is=5.298(which is only slightly larger ~Comparing to results for the mean squared radius of gyration
than for 450 K). The reason for this difference is that forfrom MD simulations of melts of short alkane chains, which
short alkane chains, which show an Arrhenius behavior ohad employed the same realistic force field that we are using,
the viscosity up to their crystallization temperatutee ac- we concluded that the truncation of the Lennard-Jones inter-
tual relaxation time of the chains is mainly determined by theaction beyond the pentane 1-5 distance corresponds to the
temperature dependence of the local mobility which is giverexcluded volume screening conditions in the alkane melts.
by a thermally activated crossing of the barriers between thd&he Kramers approach results in values for the orientational
trans and the gauche states in the dihedral angle potential. Butocorrelation time of the molecules given in units of a
contrast the moments that enter the Kramers calculation argcaled shear response time that includes @hpriori un-
not susceptible to the barriers in this potential but to theknown monomer friction coefficient. To translate the Kram-
energetic difference between the trans and gauche minimars relaxation times into real time units, we mapped our re-
This approach is therefore not able to predict the temperaturgult for the relaxation time of £ at 450 K to the result
dependence of the relaxation times correctly using just onebtained for this relaxation time from a MD simulation of a
fixed translation of the time scale. At each temperature onenelt of these chains at the same temperature that had used
has to perform the time scaling seperately for a chain lengtithe same realistic force field. With this time scale identifica-
where independent information on the orientational correlation and the Rouse formula connecting the melt shear viscos-
tion times is available. As a last point we will use this ap-ity to the orientational correlation time, we were able to re-

IV. CONCLUSIONS AND OUTLOOK
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produce the experimental chain length dependence of thiémit (for small sheans and as the number density of

shear viscosity of short chain alkane melts at 450 K. chains in solution approaches zero of
This shows that the chain length dependence of the melt
viscosity for short chains can be predicted on grounds of a 105\ Y2kgTr  7—7s
purely static calculation of moments of single chain confor- (E) e = e (17

mations. The approach fails, however, in the prediction of
the temperature dependence of the viscosity. The reason for
this is that the temperature dependence is to a large degrééere is the viscosity of the solution angi is the viscos-
determined by the temperature dependence of the main locBy Of the solvent. This has been studied for coarse-grained
conformational relaxation mechanism, which is the activatednodels of linear chains, rings and stars with excluded vol-
crossing of the barriers in the torsion potentiéfhis as- Ume interactions but no Lennard-Jones interacf>Ad]. In
sumes that intermolecular packing effects that eventualfRef. [2] it was also shown how to include hydrodynamic
lead to a glass transition of the melt are not important, as i§0rces on the level of the preaveraged Oseen tensor into this
the case for the short alkanes that we stugiidcdsampling of ~ a@pproach. A comparison of E¢L1) with experimental data
equilibrium conformations, however, is only susceptible tofor alkanes in® solvents has to await a suitably large base of
the energy difference between the minima in this potentialexperimental alkane intrinsic viscosity data.

and cannot capture the effect of the barriers. Therefore, the
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